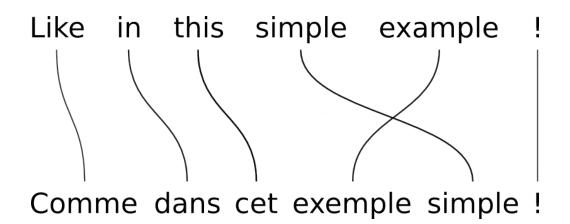
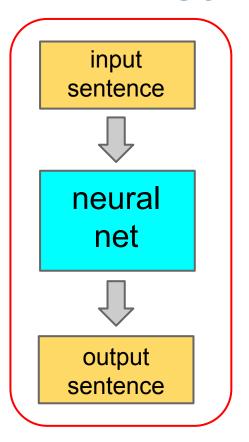
Neural Machine Translation by Jointly Learning to Align and Translate

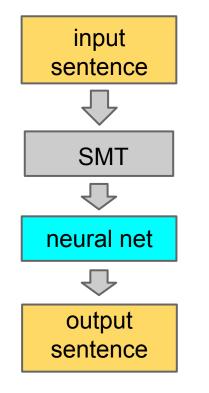
Dzmitry Bahdanau*

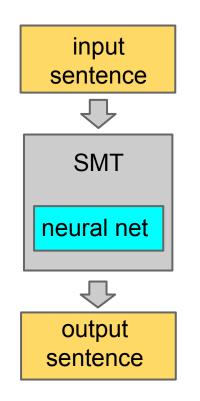


KyungHyun Cho, Yoshua Bengio

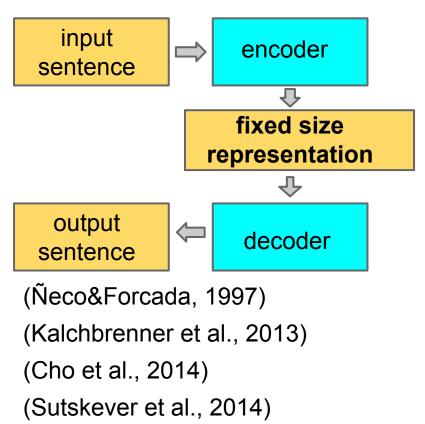


This Talk Is About...

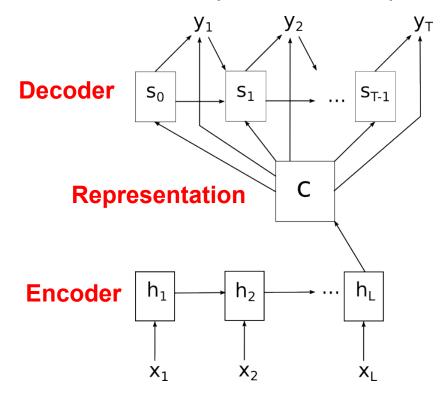

... a neural network that translates...


Neural Machine Translation

different from

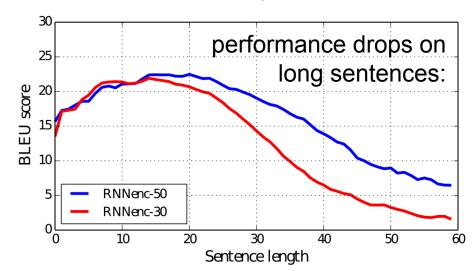


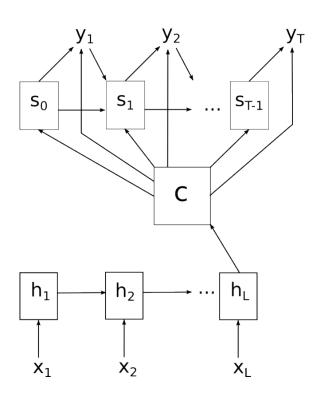
(Schwenk et al. 2006)



(Devlin et al. 2014)

Encoder-Decoder Approach




RNN Encoder-Decoder (Cho et al. 2014):

RNN Encoder-Decoder: Issues

- has to remember the whole sentence
- fixed size representation can be the bottleneck
- humans do it differently

RNN Encoder-Decoder: Issues

Deviations in the end of long sentences:

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

RNN Encoder-Decoder Un privilège d'admission est le droit d'un médecin de reconnaître un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé</u>.

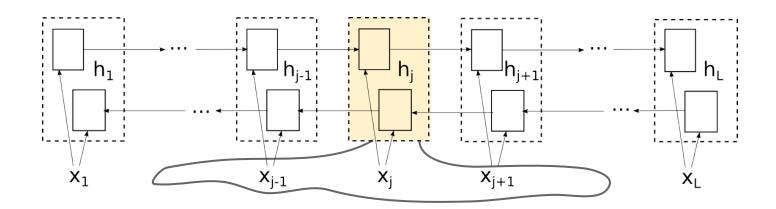
[based on his state of health???]

Key Idea

Tell Decoder what is now translated:

The agreement on European Economic Area was signed in August 1992.

L'accord sur ???


L'accord sur l'Espace économique européen a été signé en ???

Have such hints computed by the net itself!

New Encoder

Bidirectional RNN: h_j contains x_j together with its context (..., $x_{j-1}, x_{j+1}, ...$).

 $(h_1, ..., h_l)$ is the new *variable-length* representation instead of *fixed-length* c.

New Decoder

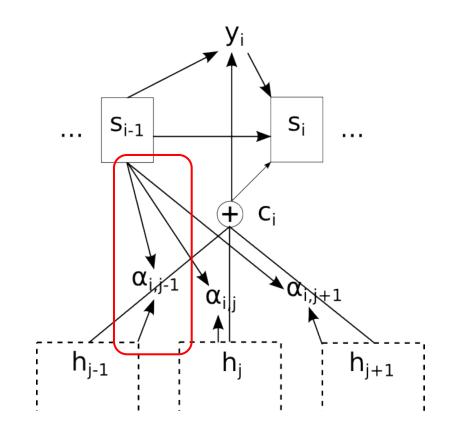

Step i:

compute alignment

compute context

generate new output

compute new decoder state



Alignment Model

$$e_{ij} = v^T \tanh(Ws_{i-1} + Vh_j) \qquad \textbf{(1)}$$

$$lpha_{ij} = rac{\exp(e_{ij})}{\sum\limits_{k=1}^{L} \exp(e_{ik})}$$
 (2)

- nonlinearity (tanh) is crucial!
- simplest model possible
- Vh_j is precomputed => quadratic complexity with low constant

Experiment: English to French

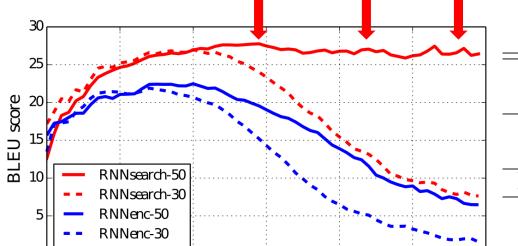
Model:

RNN Search, 1000 units

Baseline:

- RNN Encoder-Decoder, 1000 units
- Moses, a SMT system (Koehn et al. 2007)

Data:


- English to French translation, 348 million words,
- 30000 words + UNK token for the networks, all words for Moses

Training:

- Minimize mean log P(y|x,θ) w.r. θ
- $\log P(y|x,\theta)$ is differentiable w.r. $\theta => usual methods$

Quantitative Results

30

Sentence length

40

50

60

10

20

much better than RNN Encoder-Decoder

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63
	•	

without unknown words comparable with the SMT system

Qualitative Results: Translations

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

New Model

Un privilège d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical <u>pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des soins de santé à l'hôpital.</u>

Encoder-Decoder

.... <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé</u>.

[based on his state of health???]

Qualitative Results: Alignment

The agreement on the European Economic Area was signed in August 1992. L'accord sur l'Espace économique européen a été signé en août 1992. It is known, that the verb often occupies the last position in German sentences

Es ist bekannt , dass das Verb oft die letzte Position in deutschen Strafen einnimmt

Related Work: Neural MT

- Sutskever et al. (2014)
 - 30.6 BLEU with 4-layer LSTM Encoder-Decoder, 90k words
- Jean et al. (2015)
 - 32.8 BLEU, RNNSearch, 500k words by importance sampling
- Better results by using dictionaries and ensembles
 - Jean et al. (2015), Luong et al. (2015), both achieve state-of-theart

Related Work: Attention Mechanisms

Our alignment model is an attention mechanism.

- First differentiable attention model for handwriting synthesis: (Graves et al. 2013)
 - monotonic alignment only
 - predicts shifts instead of selecting location
- Non-differentiable attention mechanism for image classification: (Mnih et al. 2014)

Summary

Novel approach to neural machine translation

Thanks!

- No fixed size representation
- Plausible alignments
- Applicable to many other structured input/output problems
 - response generation (not exactly, but Shang et. al 2015)
 - speech recognition (Chorowski et. al 2014)
 - caption generation (Xu et. al, 2015)
 - video description generation (Yao et. al, 2015)