Skip to yearly menu bar Skip to main content


Oral Session

Oral Session 6A

Hall 1 Apex

Moderators: Yiwei Wang · Jesse Cresswell

Sat 26 Apr 12:30 a.m. PDT — 2 a.m. PDT
Abstract:
Chat is not available.

Sat 26 April 0:30 - 0:42 PDT

Training Language Models to Self-Correct via Reinforcement Learning

Aviral Kumar · Vincent Zhuang · Rishabh Agarwal · Yi Su · JD Co-Reyes · Avi Singh · Kate Baumli · Shariq Iqbal · Colton Bishop · Rebecca Roelofs · Lei Zhang · Kay McKinney · Disha Shrivastava · Cosmin Paduraru · George Tucker · Doina Precup · Feryal Behbahani · Aleksandra Faust

Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffective in modern LLMs. Current methods for training self-correction typically depend on either multiple models, a more advanced model, or additional forms of supervision. To address these shortcomings, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model's own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.

Sat 26 April 0:42 - 0:54 PDT

Reasoning Elicitation in Language Models via Counterfactual Feedback

Alihan Hüyük · Xinnuo Xu · Jacqueline Maasch · Aditya Nori · Javier Hernandez

Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.

Sat 26 April 0:54 - 1:06 PDT

Self-Improvement in Language Models: The Sharpening Mechanism

Audrey Huang · Adam Block · Dylan Foster · Dhruv Rohatgi · Cyril Zhang · Max Simchowitz · Jordan Ash · Akshay Krishnamurthy

Recent work in language modeling has raised the possibility of “self-improvement,” where an LLM evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new theoretical perspective on the capabilities of self-improvement through a lens we refer to as “sharpening.” Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ‘sharpen’ the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner has sample access to a pre-trained base policy. Then, we analyze two natural families of self improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self- improvement by leveraging online exploration, bypassing the need for coverage. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.

Sat 26 April 1:06 - 1:18 PDT

ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement

XIANGYU PENG · Congying Xia · Xinyi Yang · Caiming Xiong · Chien-Sheng Wu · Chen Xing

Post-training Large Language Models (LLMs) with explicit reasoning trajectories can enhance their reasoning abilities. However, acquiring such high-quality trajectory data typically demands meticulous supervision from humans or superior models, which can be either expensive or license-constrained. In this paper, we explore how far an LLM can improve its reasoning by self-synthesizing reasoning paths as training data without any additional supervision. Existing self-synthesizing methods, such as STaR, suffer from poor generalization to out-of-domain (OOD) reasoning tasks. We hypothesize it is due to that their self-synthesized reasoning paths are too task-specific, lacking general task-agnostic reasoning guidance. To address this, we propose Reasoning Generalist via Self-Improvement (ReGenesis), a method to self-synthesize reasoning paths as post-training data by progressing from abstract to concrete. More specifically, ReGenesis self-synthesizes reasoning paths by converting general reasoning guidelines into task-specific ones, generating reasoning structures, and subsequently transforming these structures into reasoning paths, without the need for human-designed task-specific examples used in existing methods. We show that ReGenesis achieves superior performance on all in-domain and OOD settings tested compared to existing methods. For six OOD tasks specifically, while previous methods exhibited an average performance decrease of approximately 4.6% after post training, ReGenesis delivers around 6.1% performance improvement. We also conduct an in-depth analysis of our framework and show ReGenesis is effective across various language models and design choices.

Sat 26 April 1:18 - 1:30 PDT

Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models

Yuda Song · Hanlin Zhang · Carson Eisenach · Sham Kakade · Dean Foster · Udaya Ghai

Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference. We explore a framework where the model verifies its own outputs, filters or reweights data based on this verification, and distills the filtered data. Despite several empirical successes, a fundamental understanding is still lacking. In this work, we initiate a comprehensive, modular and controlled study on LLM self-improvement. We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap. Through experiments with various model families and tasks, we discover a scaling phenomenon of self-improvement -- a variant of the generation-verification gap scales monotonically with the model pre-training flops. We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance. Our findings not only advance understanding of LLM self-improvement with practical implications, but also open numerous avenues for future research into its capabilities and boundaries.

Sat 26 April 1:30 - 1:42 PDT

Learning Dynamics of LLM Finetuning

YI REN · Danica Sutherland

Learning dynamics, which describes how the learning of specific training examples influences the model's predictions on other examples, gives us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during different types of finetuning, by analyzing the step-wise decomposition of how influence accumulates among different potential responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. In particular, we propose a hypothetical explanation of why specific types of hallucination are strengthened after finetuning, e.g., the model might use phrases or facts in the response for question B to answer question A, or the model might keep repeating similar simple phrases when generating responses. We also extend our framework and highlight a unique ``squeezing effect'' to explain a previously observed phenomenon in off-policy direct preference optimization (DPO), where running DPO for too long makes even the desired outputs less likely. This framework also provides insights into where the benefits of on-policy DPO and other variants come from. The analysis not only provides a novel perspective of understanding LLM's finetuning but also inspires a simple, effective method to improve alignment performance.